
How to develop plug-ins for Justinmind

INDEX
Overview 3

Installing the SDK 4

First example: Print screen names 5

 Configuring the Project 5

 Building your first integration 8

Methods and Classes 10

 Introduction 10

 API library description 11

 Main classes diagram 12

 Components classes diagram 13

 Classes referring to events 15

Second example: Translator 16

Extend Prototyper: Plug-ins 18

References 21

Appendix: Debug your plug-ins code 22

2 © 2014 Justinmind S.L. All rights reserved.

3 © 2014 Justinmind S.L. All rights reserved.

WHAT IS THIS DOCUMENT ABOUT?

Welcome to the developer documentation for Justinmind tools. If you want
to write an add-on for Justinmind, you have come to the right place. Your
add-on may be a plug-in or an entirely independent application that uses
our APIs. This document covers both aspects: how to make a plug-in for
Justinmind and how to build an entirely independent application that is able
to read the contents in a .vp file (files made with Justinmind that contain all
the information of a prototype).

You can use our APIs to reuse the work you did building your prototypes
and generate code. In this document you will find a description of the
classes included in our APIs and some examples that will help you to get
started. You can find additional documents in our web site.

OVERVIEW

http://www.justinmind.com/plugin-market/create-plugin

4 © 2014 Justinmind S.L. All rights reserved.

INSTALLING THE SOFTWARE DEVELOPMENT KIT (SDK)

The first thing you have to do if you want to code an integration with
Justinmind is to download our SDK. This SDK is an Eclipse IDE with all the
required libraries already included. Once downloaded just unzip it in a
folder and launch it. It will request you to set another folder as 'workspace'
for all your project files. Choose one and press ok. Then, a screen similar to
this one will appear:

INSTALLING
THE SDK

This is the typical welcome window for the Eclipse IDE. Just close it and let's
build our first integration with Justinmind. Are you excited? I am!

http://www.justinmind.com/plugin-market/create-plugin

5 © 2014 Justinmind S.L. All rights reserved.

FIRST EXAMPLE: PRINT SCREEN NAMES

You are all set and ready to build your first integration with Prototyper. In
this case we are going to build a very simple code that reads a .vp file and
prints by console the names of all the screens in that prototype. Let's start.

CONFIGURING THE PROJECT

Select File → New → Other... Then choose 'Plug-in Project (IMPORTANT
NOTE: all the integrations must be coded in Java, if you don't know how to code
in Java, well, you've just found a reason to learn it!. There is plenty of resources,
tutorials and stuff to learn how to code in Java. Just google it, is not that hard)

FIRST EXAMPLE:
PRINT SCREEN
NAMES

6 © 2014 Justinmind S.L. All rights reserved.

FIRST EXAMPLE:
PRINT SCREEN
NAMES

Press 'Next' and then choose a name for your project. Press 'Next' again
and check the options 'Generate an activator...' and 'This plug-in will make
contributions to the UI'

7 © 2014 Justinmind S.L. All rights reserved.

FIRST EXAMPLE:
PRINT SCREEN
NAMES

Finally push 'Finish'. Your Eclipse IDE will look like this:

Now select the tab called 'Dependencies'. Push the 'add' button and write
'com.justinmind'. Select the three plug-ins listed and press 'ok'. Then select
'File → Save'. Now you have a project configured to access to all the
methods in the API.

You will need to follow the same steps every time you want to build a new
integration for Justinmind.

8 © 2014 Justinmind S.L. All rights reserved.

BUILDING YOUR FIRST INTEGRATION

Ok, so you are ready now to build your first integration. This will be a very
simple integration but you will see it will be easy to extend it to more
complex cases. In this case we are going to create a little java application
that reads all the screens inside a .vp file and print their names by console.
Let's do it!

First create a class inside your source folder. Right click on the folder called
'src' and select 'New → class'. Give it a name and check the option 'public
static void main(String[] args)' like this:

FIRST EXAMPLE:
PRINT SCREEN
NAMES

Press the finish button. Then add the actual code for the integration until it
looks like this:

9 © 2014 Justinmind S.L. All rights reserved.

FIRST EXAMPLE:
PRINT SCREEN
NAMES

Save your changes. Then right click on the class file you just created and
select 'Run as → Java Application'. The example you just coded will be
executed allowing you to select a .vp file and see all its screens listed in the
console.

Now let's take a closer look at the code. The first two lines use a file dialog
to ask the user for a .vp file. But let's focus on the three lines after those
lines of code:

String temp_directory = System.getProperty("java.io.tmpdir");

FileUtils.unZip(path_to_vp, temp_directory+File.separator+"work");

IPrototype prototype =

API.getPrototypeLoader().loadPrototype(temp_directory+File.separat

or+"work");

These are the lines of code that do all the magic. This piece of code will load
all the prototype's information on the selected .vp file into the variable
called 'prototype'. Using that variable and the methods in the API you can
browse all the information in your prototypes and generate whatever you
want with it. In this example we just read all the screens, templates and
masters and we print their names by console.

In order to load all the information of a .vp file you need to extract the
contents of the file into a folder. That's what the first two lines of this
example do. Just remember to clean all those files when you are done with
it using this line of code:

FileUtils.deepDeleteDirExceptRoot(temp_directory+File.separator+"w

ork");

10 © 2014 Justinmind S.L. All rights reserved.

METHODS AND CLASSES

Now let's take a look at the components this API is composed by.

METHODS AND
CLASSES

As we have seen in the previous section the API is made of three plug-ins or
jars (Java libraries). One is a library of some utilities to handle files and
minor stuff. The other two are the ones that hold all the code to load a
prototype.

The model are the actual classes that hold the information of the prototype.
Those classes are highly complex, that's why another library has been made
an placed over it. The API library is the one you must use when you code an
integration with Justinmind. The direct access to the model library is highly
discouraged because the classes there can change from one update of
Justinmind to another. All the documents provided for the developers of
plug-ins refer to the classes in the API library, not the ones in the model
library.

11 © 2014 Justinmind S.L. All rights reserved.

METHODS AND
CLASSES

All the classes in the api library are Java Interfaces and they are not
intended to be subclassed or implemented by your own classes.

The rest of the classes in the library can be categorized in three groups: the
main prototype classes, the classes for the components and the classes for
the events. In the next pages you can find the UML diagrams for each of this
groups (check the Javadoc documents for a detailed description of each
class and method).

API LIBRARY DESCRIPTION

The main entry point to the API library is the class named 'API'. That class
has static methods to load a prototype's file. There are two ways to load a
prototype, one is using the path to the location of a .vp file. The other one is
to load the 'current loaded prototype' and only applies to plug-ins that will
be run from within Justinmind.

12 © 2014 Justinmind S.L. All rights reserved.

MAIN CLASSES DIAGRAM

13 © 2014 Justinmind S.L. All rights reserved.

COMPONENTS CLASSES DIAGRAM (1)

(the diagram continues in the next page)

14 © 2014 Justinmind S.L. All rights reserved.

COMPONENTS CLASSES DIAGRAM (2)

15 © 2014 Justinmind S.L. All rights reserved.

CLASSES REFERRING TO EVENTS

16 © 2014 Justinmind S.L. All rights reserved.

SECOND EXAMPLE: TRANSLATOR

Now that we've seen in detail all the information you can gather from a
prototype let's use it to build an example. Imagine we would like to have a
MS Excel file with all the texts in your prototype and send it to a translator.
We are going to build an example to do exactly that. We will extract all the
texts from labels, buttons, links and so on from a prototype and create a MS
Excel file with all that information.

First create a plug-in project like the one you did in the first example. Name
it 'Translator' and create a main class inside the src folder.
Place this code inside the main method:

SECOND
EXAMPLE:
TRANSLATOR

FileDialog dialog = new FileDialog(new Shell());

String path_to_vp = dialog.open();

String temp_directory = System.getProperty("java.io.tmpdir");

FileUtils.unZip(path_to_vp, temp_directory+File.separator+"work");

IPrototype prototype =

API.getPrototypeLoader().loadPrototype("prototype",temp_directory+File.sep

arator+"work");

 List<ICanvas> canvas = prototype.getApiCanvases();

 String content = "Word in prototype\n\n";

 for (ICanvas current : canvas) {

 content+="Screen: "+current.getApiName()+"\n";

 List<IComponent> components = current.getApiRoot().getApiChildren();

 for (IComponent iComponent : components) {

 content+=addTextsToContent(iComponent);

 }

 }

FileDialog dialog = new FileDialog(Display.getDefault().getActiveShell(),

SWT.SAVE);

dialog.setFilterExtensions(new String[] { "*.csv" });

dialog.setOverwrite(true);

String path = dialog.open();

if (path != null) {

 Writer output = null;

 File file = new File(path);

 FileWriter fw = null;

 try {

 fw = new FileWriter(file);

 output = new BufferedWriter(fw);

 output.write(content);

 output.close();

 Desktop.getDesktop().open(file);

 } catch (IOException e) {

 }

} else {

 // show error

}

17 © 2014 Justinmind S.L. All rights reserved.

Select that class, then right click on it and choose run as java application.
You will be requested to select a .vp file and where do you want to save the
.csv file with all the texts in the selected prototype. How is this code doing
that?

The first piece of code loads the information of a .vp file in the IPrototype
class. Then there's another piece of code that browse the elements of each
screen, template or master using the class hierarchy described in the
'Component classes diagram' described in the previous section of this
document. When it founds a text it adds it to a String which will be later
used to create the resulting .csv file.

As you see is extremely easy to read the information of a .vp file. You can
use this option to generate any kind of things you like. You could even
generate your own HTML code if you like.

SECOND
EXAMPLE:
TRANSLATOR

18 © 2014 Justinmind S.L. All rights reserved.

EXTEND JUSTINMIND WITH PLUG-INS

So far we have talked about how to create code that is able to read the
contents of a .vp file and do something with them. Now we will see how to
add menu and tool bar options inside Prototyper itself.

Justinmind Prototyper has been built using a Eclipse Framework technology
called RCP (Rich Client Platform). This technology allows you to extend the
application's functionality using plug-ins. There's a lot of information
available in the web about how to develop plug-ins for RCP applications like
Prototyper. What this document will cover are just the basics to build simple
plug-ins for Justinmind Prototyper. We encourage you to go deeper on the
plug-ins development if you want to build more complex things.

So, let's start! First we need to create a new plug-in project just like we did in
the previous examples. Go to file → Project → Other and select Plug-in
Project. Give it a name and push 'next'. Then check the options 'Generate an
activator...' and 'This plug-in …' like in the previous examples but this time
instead of the 'Finish' button press 'next'. Then select the 'Hello, World
Command' template:

EXTEND
JUSTINMIND
WITH PLUG-INS

And press 'Finish'. The new project will appear in the project's folder at the
left. Open the src folder and look for the class called SampleHandler inside
handlers package. That class is the main entry point to your code. Open it
and look for the method 'execute'. That it's the equivalent of the 'main'
method we had in the previous examples. So write some code there just to
test the integration (you can copy and paste the code of one of the
examples).

19 © 2014 Justinmind S.L. All rights reserved.

EXTEND
JUSTINMIND
WITH PLUG-INS

Now you need to configure your plug-in to be able to work in Prototyper.
Open the file called 'MANIFEST.MF' that is located inside the META-INF
folder. Then select the tab called 'MANIFEST.MF' and add this line at the
bottom:

Eclipse-RegisterBuddy: com.justinmind.prototyper.api

And press 'Save'. Now your plug-in and the API are 'buddies' so they will be
able to work together and so on. Don't think too much about it, if you want
to know what that sentence really does check the information in
www.eclipse.org.

Select the tab called 'Dependencies'. Push the 'add' button and write
'com.justinmind'. Select the three plug-ins listed and press 'ok'. Then select
'File → Save'. Now you have a project configured to access to all the
methods in the API.

CONFIGURE COMMAND NAME

Open the file named plugin.xml and select the tab 'extensions'. Then select
the 'Sample Command' node in the extensions tree (inside
org.eclipse.ui.commands branch). There you will be able to define the menu
option name that will execute your plug-in inside Justinmind.

ADD TO APPLICATION MENU AND TOOLBAR

In order to make your plug-in visible inside Justinmind, you need to set its
location within the workbench menu and the toolbar of the application:
Open plugin.xml and select the tab 'extensions'. Select
'org.eclipse.ui.menus' node and then 'menu:org.eclipse.ui.main.menu'.
Replace its locationURI with the following text:
'menu:org.eclipse.ui.workbench.menu?after=additions'.

We highly recommend you to append your plug-in to the 'plugins' menu
already available in Justinmind so the users of your plug-in know where to
find it. So if you want your plug-in to be included inside the 'Plug-ins' menu
option in Justinmind once the user imports it, then you need to customize
the 'org.eclipse.ui.menus' Extension this way: Select 'Sample Menu' node in
the extensions tree and set as id → plugins and as label → Plug-ins just
like the screenshot below:

http://www.eclipse.org/

20 © 2014 Justinmind S.L. All rights reserved.

EXTEND
JUSTINMIND
WITH PLUG-INS

The plug-in is ready now but you need to export it out of the SDK. Select the
tab 'overview' and look for the link that says 'Export Wizard':

Then select a destination folder to save your plug-in and press finish. Your
plugin will be saved in a folder called 'plugins' inside the one you defined as
the destination folder.

You are all set and ready to test your plug-in in Justinmind. Open Justinmind
and select the option 'Install a plug-in' that you'll find in the Plug-ins menu.
Select the plug-in you've just exported and restart Justinmind. Now you will
have a new option available inside the Plug-ins menu that refers to the plug-
in you just made.

So that's all folks! Now it's time to build your own plug-ins and share them
(or sell them) with all the other Justinminders around there!

21 © 2014 Justinmind S.L. All rights reserved.

REFERENCES

Eclipse - The Eclipse Foundation open source community website.
http://www.eclipse.org/

The Java™ Tutorials
http://docs.oracle.com/javase/tutorial/

Stack Overflow : questions about Java development
http://stackoverflow.com/

REFERENCES

http://www.eclipse.org/
http://docs.oracle.com/javase/tutorial/
http://stackoverflow.com/

22 © 2014 Justinmind S.L. All rights reserved.

APPENDIX: DEBUG YOUR PLUG-IN’S CODE

There is way, if you are using the SDK for MS Windows, to debug your plug-
ins without exporting them. Inside the SDK go to Window → Preferences
and open the option 'Plug-in Development'. Select 'Target platform' and
push the 'add' button. Then push 'next' and the 'add' button again. Select
'directory' and then 'next'. Push 'browse' and select the folder where you
installed Justinmind (typically c:\Program Files\Justinmind\Justinmind
Prototyper x.x.x) and then press 'finish'. Press finish again and select 'new
target' as the new Target Platform:

APPENDIX:
DEBUG YOUR
PLUG-IN’S
CODE

Finally press 'ok'. Now you have your SDK configured and ready. Now if you
want to run or debug your plug-in you just have to right click on the project
and select 'Run as Eclipse Application'. Then your Justinmind Prototyper will
be executed with your plug-in already installed.

225 Bush St. Fl 12 San Francisco,
CA 94104-4254 United States
www.justinmind.com
jim.sales@justinmind.com

